机器学习 - SVM-1

支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning)方式对数据进行二元分类(binary classification)的广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane)。

机器学习 - 决策树

决策树是一种常见的机器学习算法,它的思想十分朴素,类似于我们平时利用选择做决策的过程。

机器学习 - 逻辑回归

logistic 回归又称 logistic 回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。

机器学习 - 线性回归

线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。

机器学习 - KNN

邻近算法,或者说 K 最近邻 (kNN,k-NearestNeighbor) 分类算法是数据挖掘分类技术中最简单的方法之一。所谓 K 最近邻,就是 k 个最近的邻居的意思,说的是每个样本都可以用它最接近的 k 个邻居来代表。这也是为什么它被叫做k-Nearest Neighbor。

机器学习 - 基本概念

机器学习 (Machine Learning, ML) 是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。